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1 Meaning as an object 

 

1.1 Formal semantics 

Some fifty years ago, semantics of natural language started a new 
era. The harbingers of the new period were people operating on 
the boundary between logic, philosophy and linguistics, such as 
Montague (1974), Lewis (1972) or Cresswell (1973), who went 
for the reconstruction of meanings as set-theoretic objects. This 
provided for a very neat picture of the system of meanings 
reflecting (or being reflected by) the system of linguistic 
expressions. How was all of this accomplished, and was this a 
genuine breakthrough in semantics? (It is fair to note that by far 
not all people engaged in the semantics of natural language were 
impressed by this kind of formal semantics.) 

Nowadays, this breakthrough is far behind us and we can look 
back at it with the benefit of hindsight. Not that the paradigm of 
formal semantics would fade away; analyses of various aspects 
and phenomena of natural language carried out within its 
framework keep appearing (regularly, for example, in journals 
like Linguistics and philosophy and Natural language semantics). 
But the heated debates of its conceptual foundations are long over 
now, formal semantics is taken as an established (though 
sometimes slightly heterogeneous) framework that can provide 
space to discuss semantics of natural language, not as something 
to be questioned or challenged. This distance makes it possible to 
see the foundations of formal semantics in a clear light and to 
assess its merits. 

The roots of this approach to meaning go back to the early 
analytic philosophy with its conviction that natural language is 
treacherous and that we must see through its apparent surface 
structures to its logical forms which determine the contents of its 
sentences. The paradigmatic analysis of the sentences with 
definite descriptions due to Russell (1905) tell us that a sentence 
like  
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 The king of France is bald 

does not necessarily tell us that an individual, the king of France, 
has a property, baldness. Rather it tells us something much more 
complicated, which Russell captures by the following formula: 

 x(KF(x)B(x)(y(KF(y)(y=x)))) 

It is only if we realize this, Russell insists, that we are clear about 
what the sentence really says - about its meaning. It follows, 
according to Russell, that the existence of the king of France is 
not a condition of the meaningfulness of the sentence, but just part 
of what sentence asserts; so if this is not the case the sentence is 
simply false. This analysis also provides for the ambiguity of the 
negation of the sentence, while the negation sign can be put in 
front of the whole sentence, but also in front of the predicate B 
etc. 

Whatever we think about the merits of this analysis, we see that 
it does not tell us explicitly what the meaning of the sentence is, 
not to speak about the meanings of its parts, such as the definite 
article the. One possible approach to a further development of this 
approach to language was to try to capture the meanings 
explicitly. And some ideas of Frege, buttressed by the 
development of set theory, appeared to offer a way of how to 
accomplish this. The way was hacked through especially by 
Carnap (1942; 1947), followed by Montague & comp.  

The outcome of this new approach was, for example, capturing 
the meaning of a sentence as a class of possible words in which 
the sentence is true, or capturing the meaning of the definite 
article as something like the function from sets to individuals 
which maps all singletons on their single members and all other 
sets on nothing. So here we have the promise of answering the 
question about the nature of meaning, wholly explicitly, by 
presenting meanings as set-theoretical objects. 

This approach to meaning has smuggled in the assumption that 
meanings are objects. In fact, this assumption appears quite 
trivial, for what else could a meaning be than a kind of object? 
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Imagining linguistic meanings (viz. that which makes a mere 
sound or scribble into a meaningful expression) as objects comes 
naturally. Is not the relationship between a word and its meaning 
akin to t relationship between a proper name and its bearer? Yet 
when we start to think about words other than nominal phrases, 
this idea becomes ever blurrier. What kind of objects, represented 
by expressions, could meanings be? 

Several answers spring to mind: 

One possibility is that meanings are objects of the spatiotemporal 
world. This reinforces the parallel between proper names and 
linguistic expressions in general. But it seems that here we 
encounter what can be called the problem of scarcity: the 
spatiotemporal world does not contain entities capable of serving 
as meanings for all our expressions. We need not even broach 
words such as always or notwithstanding, for already for such 
ordinary words as dog or run there do not seem to be single 
spatiotemporal objects which could be seen as their meanings. 
(Something like the mereological sum of all the actual dogs or 
runners would obviously not do.) 

Another possibility is that meanings are objects of the mental 
realm. This appears to solve the problem of scarcity, for the 
mental realm can be seen as containing a bottomless fount of 
entities. However, here we face another kind of problem which 
can be called the problem of intersubjectivity: meanings are 
essentially intersubjective, they fulfill their role only as much as 
they can be shared among participants of communication, hence 
they cannot reside in private minds. (As Davidson, 1990, p. 314, 
puts it, "that meanings are decipherable is not a matter of luck; 
public availability is a constitutive aspect of language".) 

Then there is a further possibility: Meanings are objects of a realm 
of ideal entities. This tries to avoid both the problem of scarcity 
and that of intersubjectivity, for the objects of this realm are 
considered objective like spatiotemporal things, and yet are not 
limited by space and time. Frege (1918, p. 69) was adamant about 
this being the only viable possibility for meanings: "A third realm 
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must be recognized. What belongs to this corresponds with ideas, 
in that it cannot be perceived by the senses, but with things, in 
that it needs no bearer to the contents of whose consciousness to 
belong." 

The problem with this, however, is the status of the realm of the 
ideal entities. Its whereabouts seem to be slightly enigmatic and 
in any case its denizens seem to be causally inert, which makes it 
hard to explain their impact on the spatiotemporal world. But here 
there is an opening for sets: they are ideal entities of the above 
kind, and yet they are backed up by a host of respectable 
mathematicians, hence to call them "enigmatic" would seem 
inappropriate. (The causal inertness is not yet addressed, but 
hopefully this too could be worked around ...) So perhaps sets 
may help us make semantics ultimately explicit. This would 
explain the open arms with which many theoreticians of language 
welcomed the set-theoretic semantics.  

However, let us first return to the time before set theory came to 
the full function. 

 

1.2 Frege on ideal objects 

The general question is how we can explicitly grasp ideal objects. 
Frege, the ur-father of formal semantics, wrestled with this 
problem when he faced the question What is a number?,the 
answer to which was, in his eyes, key to the understanding the 
foundations of mathematics. He came to the idea that such objects 
must be grasped in terms of their names; however, he insisted, it 
is not enough to have (alleged) names of numbers, we also must 
have a way to determine when two names name the same number. 
Frege (1980, p. 73) writes: "If we are to use the symbol a to 
signify an object, we must have a criterion for deciding in all 
cases whether b is the same as a, even if it is not always in our 
power to apply this criterion. ... When we have thus acquired a 
means of arriving at a determinate number and of recognizing it 
again as the same, we can assign it a number word as its proper 
name." 
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To indicate that this approach does not concern only numbers, but 
abstract objects more generally, he first turns his attention, as a 
warm-up, to the abstract objet direction. The direction is 
something that can be, in geometry, represented by a straight line, 
we can therefore use the names such as the direction of the line a. 
Hence we have names for the directions, but in order to be able to 
use them as genuine names, we must supply a method which 
determines when two of the names name the same direction. Hence 
we need a method which lets us decide, for any claim of the form 
the direction of the line a is the same as the direction of the line b, 
whether it is true. Such a statement, however, can be clearly seen as 
a mere paraphrase of the statement the lines a and b are parallel, 
the truth value of which we can find (at least in principle). This lets 
us understand directions as objects (to recognize the same direction 
under different names). 

But all this doesn't really tell us much about what a direction is. But 
this is normal, according to Frege: "The definition of an object does 
not, as such, really assert anything about the object, but only lays 
down the meaning of a symbol." (p. 78). To constitute an abstract 
object, then, is to know nothing more than to establish the meaning 
of a certain kind of sign: we cannot establish meaning except by 
determining how that sign is used in certain sentences (especially 
+certain equations), and more specifically what truth-values those 
sentences have. (Frege states bluntly, "It is only in the context of a 
proposition that words have any meaning"; p. 73.) All we can say 
about direction is that it is something that is common to two parallel 
lines. Thus the object direction a is identical with the object 
direction b precisely if a and b are parallel; both direction a and 
direction b in this case simply denote 'what a and b have in common 
(in this respect)'. 

But if this is the case, then, according to Frege, we can identify the 
direction of a line without scruple with any suitable object that is 
associated with the line and that satisfies the condition that it is the 
same for two lines precisely when they are parallel. Such a 
convenient object, according to Frege, is, in the case of a line a, the 
domain of the notion of line parallel to a - that is, we would say 
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today, the set of all objects which fall under this notion, i.e., the set 
of parallels of a. For the domain of the notion parallel to a (the set 
of parallels of a) and the domain of the notion parallel to b (the set 
of parallels of b) are obviously really identical precisely when a and 
b are parallel. Frege thus proposes to identify the subject direction 
a with the set of all parallels of a.  

Does this mean that the direction is the set of parallels? (Isn't this 
counter-intuitive? - It doesn't seem that if we were thinking of the 
direction of a line, we would be thinking of a set!) There is no 
simple answer to this question. Frege's reasoning here is essentially 
this: since we can say nothing more about direction than that it is 
what is common to all parallel lines, we can pretty well identify it 
with anything that has this property - and disregard that the direction 
so grasped may well take on other, non-intuitive properties. This 
suggestion foreshadows the method that Carnap (1947) later called 
explication: replacing some abstract and hard-to-grasp entity with 
something that shares all its characteristic properties and is in some 
sense easier to grasp, usually some mathematical construct like a set 
(more about it in Section 7.3). 

By analogy, Frege now wants to approach the notion of number (or 
what he calls Anzahl). He states that just as direction is something 
that belongs to a line, number is something that belongs to a concept 
(so, for example, to the concept of planets of the solar system there 
belongs the number eight). If, as we have already done, we call the 
set of all the objects falling under a concept the domain of that 
concept, we can say that the object number of F is identical with the 
object number of G precisely when the domain of the concept 
equinumerous1 to F is identical with the domain of the concept 
equinumerous to G. In this case, then, we can - by analogy with 
what we have done in the case of direction - identify the number of 

                                                 
1 Frege's German term is gleichzählig, which is often translated as equal 
or equivalent. This is, I think, a little bit misleading. Two equinumerous 
concepts are characterized by the fact that there is a one-one mapping 
between their domains and at least in the case of very small domains, 
we can just see this as we can see that two lines are parallel 
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F with the domain of the concept equinumerous to F, that is, with 
the set of all sets equinumerous to F. 

Let us summarize the principles of Frege's approach to abstract 
entities. According to him, we can speak of entities of a certain kind, 
as we have said, if we have sigs for them, and if we can say when 
two of these signs designate the same entity, i.e. if we have a certain 
equivalence between the signs. We can then look at the relevant 
entity as that which all such equivalent signs, as signs, have in 
common. In both of Frege's examples, moreover, the sign of the 
abstract entity is uniquely tied to some more "concrete" entity - the 
direction sign to a line and the number sign to a concept. Thus, 
direction can be thought of as what all parallel lines have in 
common, and number as what all equinumerous concepts have in 
common. What Frege proposes next can be understood as 
identifying what the elements of a set have in common with the set 
itself: identifying what all parallel lines have in common with the 
set of all parallel lines, and what all equivalent concepts have in 
common with the set of all equivalent concepts.  

In this way, then, Frege reduces the notion of number, which is at 
the basis of arithmetic, to the notions of a concept and of a domain 
of a concept (a set), which he regarded as purely logical notions. 
And when the distinction between a concept and its domain was 
later blurred, it was possible simply to say that numbers are sets of 
sets. 

 

1.3 Sets 

What, after all, is a set? It is notoriously difficult to say - though 
sets play a crucial role in the foundations of modern mathematics. 
The modern theory of sets originated with Georg Cantor2, who 
originally considered sets of numbers, i.e. of points on the number 
axis. He studied certain functions and find out that if they have 
certain properties at every point of their domains, something 

                                                 
2 See Cantor (1932). 
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important follows; but then he realized that it keeps to follow if 
the functions have the properties at every point of their domain 
with the exception of some of them. (For example: it was proven, 
already before Cantor, that if a function is representable by a 
uniformly convergent trigonometric series, then the series is 
unique. Cantor proved not only that uniform convergence is not 
necessary, but that even simple convergence might fail at some 
exceptional points, providing the set of such points is finite or 
even infinite if it has a certain structure.) It turned out that he 
needed a theory to characterize the sets in question - hence the 
original version of set theory. 

But the theory acquired a life of its own and started to overspill 
its original confines. Thus, for example, Russell took sets to 
derive from properties: a property, according to him, determined 
the set of all objects having the property. (Thus, we cannot have 
a set all the elements of which do not share a property3.) It 
followed that there was no reason to consider numbers as the only 
potential elements of sets. The property of (being) hot determines 
the set of all hot objects; the property of being born in Istanbul on 
1.1.1111 determines the set of all individuals born in Istanbul on 
1.1.1111, the property of being a set of sets determines the set of 
all sets whose elements are sets. 

Frege's considerations presented in the previous section led Frege 
and Russell conclude that numbers are nothing else than certain 
sets. Number five, for example, is the set of all sets with five 
elements (oversimplifying a little bit). This led them to the 
conclusion that mathematics can be embedded into logic - the 
view known as logicism (but this is a story for a different 
occasion)4. And if numbers could be so easily embedded into such 
theory, why not other abstract objects? Functions, the abstract 

                                                 
3 An anecdote ascribed to Bertrand Russell says that while we can 
have the set of all left shoes (because these can be distinguished from 
right ones), we cannot have that of left socks. 
4 See Demopoulos (2013). 
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objects crucial for mathematics, came to be grasped as sets of 
ordered pairs. Thus, the function of square (of natural numbers) 
would be the (infinite) set {<1,1>, <2,4>, <3,9>, ...}, where <a,b> 
is a shorthand for {{a},{a,b}}. 

Hence as long as mathematics was taken to be "a science of 
number", the sets it was interested in were points on the number 
axis, but the more mathematics moved from these confines to 
becoming the general theory of structures, the more it could be 
seen as a theory of sets, because all structures came to be 
reconstructed as set-theoretical objects. This was because set 
theory slowly became a general framework for reconstructing 
abstract and ideal objects, so that reconstructibility within such 
theory became a hallmark of being a genuine object. 

The problem with sets in mathematics was that even after sets 
started to acquire such an important role in its foundation, nobody 
was able to say very clearly what a set is. The solution of this 
problem came with the axiomatizations of set theory. Several 
such axiomatizations were proposed and the general feeling was 
that a successful axiomatization gives us the answer to the 
question about the nature of sets. True, there were the disputes 
between various versions of set theory and several technical 
problems concerning these theories, but it was felt that generally 
these theories enlightened the nature of sets to a satisfactory 
extent5. 

The most basic axiom of every set theory states that sets are 
uniquely determined by their elements - that sets with the same 
elements are identical. Then there are axioms stipulating the 
existence of sets: of an empty set, of the set of all subsets of a 
given set, a set of all elements of all subsets of given set, etc. Then 
there are some more complicated axioms the need for which you 
will not understand unless you seriously submerge into set theory. 
And they are not important for us here. 

What is important for us is that plus/minus all entities that are 
                                                 
5 See Lavine (1994); Grattan-Guinness (2000); Potter (2004). 
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addressed by modern mathematics can be grasped as various sets. 
(We will discuss, in Section 5.5, the claim of the logician Pavel 
Tichý that he needs a kind of entities that cannot be 
accommodated within set theory, but this claim is controversial.) 
Crucial for this is the appropriation of the concept of function, 
which is central for many areas of mathematics. 

 

1.4 Frege’s maneuver 

Frege, however, did not believe that all meanings are objects. 
Objects are meanings of names (in the broadest sense of the word 
- even sentences, by Frege's lights, are sort of names, meaning 
peculiar objects - truth values), but predicates express concepts, 
which, according to Frege, are certain functions; and functions, 
Frege maintains, are not objects. The thing, however is that 
subsequently functions come to be ever more identified with what 
Frege called their courses-of-values and which are certain sets. 
Hence even in this way Frege paved the way to grasping 
meanings as set-theoretical objects. And it is extremely important 
to understand how functions got into the picture. 

Concepts, according to Frege, are functions which map objects on 
truth values. Think about how we use a predicate phrase: we 
attach to it a subject phrase to produce a sentence. Thus we may 
take the phrase conquered Gaul and attach it to Caesar to get the 
(true) sentence Caesar conquered Gaul (Frege's famous 
example). Similarly, I can do it with other subject phrases: 

 Caesar + conquered Gaul = Caesar conquered Gaul. 

 Aristotle + conquered Gaul = Aristotle conquered Gaul. 

 Cartman + conquered Gaul = Cartman conquered Gaul. 

 … 

We can summarize the behavior of the predicate as the following 
function: 
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 Caesar  Caesar conquered Gaul. 

 Aristotle  Aristotle conquered Gaul. 

 Cartman  Cartman conquered Gaul. 

 … 

This all concerns expressions; but we can shift this whole 
consideration from their level to the level of meanings (using 
║…║ to designate a meaning): 

║Caesar║  ║Caesar conquered Gaul║ 

║Aristotle║  ║Aristotle conquered Gaul║ 

║Cartman║  ║Cartman conquered Gaul║ 

… 

Now in view of the fact that the meaning of a name, according to 
Frege, is the individual named by it, and the meaning of a 
sentence is its truth value, this boils down to (let me use pictures 
of individuals instead of names to stress that these are not 
linguistic objects) 

  Tr 

 

   Fa 

 

 Fa 

         

  ... 

I propose to call this encapsulation of the functioning of an 
expression into a function Frege's maneuver. It has been 
copiously repeated by the formal semanticists in the building of 
their semantic models of natural language. Consider, for example, 
the adverb quickly: it maps predicative phrases on predicative 
phrases: 
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 conquered Gaul  conquered Gaul quickly 

 killed Cesar  killed Cesar quickly 

 robbed a bank  robbed a bank quickly 

 ... 

By Frege's maneuver we can transform its semantic behavior into 
a function that maps functions from objects to truth values on the 
same kinds of functions. And in a similar way we can 
accommodate expressions of plenty of other categories within the 
semantics. 

Something close to Frege's maneuver also played a crucial role in 
the transfer from the extensional to the intensional model of 
meaning. The idea behind this was that to understand an 
expression, I need to know not only its actual extension, but also 
its potential extension in contrafactual situations. Thus, to know 
the extension of a sentence is to know its truth value, to know its 
intension is to know in which circumstances it is true (viz. to know 
its truth conditions). 

Now the maneuver close to Frege's here encapsulates this again 
into a function – a function whose arguments are no longer 
meanings of linguistic expressions, but rather possible worlds. 
(What exactly the possible worlds are supposed to be has been a 
notorious source of dispute, which makes the foundations of this 
very approach somewhat shaky.) We discuss this in detail in 
Chapter 4. 

 

1.5 Semantic models of language 

If meanings are ideal objects, hence if they neither exist within 
space and time, nor do they exist merely in the subjective mental 
world of a speaker, they are difficult to get hold of and to explain 
their workings. Frege, in effect, proposed to embed these objects 
into the realm of mathematics which was later established as a 
realm supervised by set theory. This has turned out to be a fruitful 
way; but has this movement resolved the general questions 
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concerning the nature of meanings in the sense that meanings are 
sets? Well, we leave the answer to this general question to the last 
chapter of this book; and so far, we only conclude that it has 
turned out to be useful to reconstruct meanings as sets. 

The notion of reconstruction lets us maintain a certain distance 
between the possibly "ineffable" meaning as such and its set-
theoretic reconstruction. Therefore, I think it is best to see the 
situation where we reconstruct meanings as set-theoretical objects 
as building logico-mathematical models of language, especially 
of its semantics. 

Let me, before I characterize the kind of models we are going to 
build, point out some of their general structural features. We want 
there to be one and only one meaning for every meaningful 
expression (this is obviously an oversimplification, we disregard 
ambiguity); moreover, we want that the meaning of a complex 
expression be produced out of the meanings of their parts. Hence 
our models will incorporate what is called the principle of 
compositionality6. This principle states that the meaning of a 
complex expression is always uniquely determined by the 
meanings of its parts plus the mode of their combination. In 
particular, it states that if we denote the meaning of E as ║E║, 
then for every syntactic rule R there must exist an operation R* such 
that  

 ║R(E1,...,En)║= R*(║E1║,...,║En║)  

for every expressions E1, ..., En that can be combined by the rule R 
into a complex expression. The principle of compositionality is thus 
a constitutive feature of our semantic models. The principle of 
compositionality is equivalent to what can be called the principle of 
intersubstitutivity of synonyms: 

                                                 
6 See Werning, Machery, and Schurz (2005). See also Peregrin (2001a, 
Chapter 4) for a discussion of the motivations and consequences of the 
principle. 
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 if ║Ei║=║Ei'║ 

   then ║R(E1,...,Ei,...,En)║=║R(E1,...,Ei',...,En)║ 

Indeed, if the principle of compositionality holds and ║Ei║=║Ei'║, 
then ║R(E1,...,Ei,...,En)║ = R*(║E1║,...,║Ei║,...,║En║) = 
R*(║E1║,...,║Ei'║,...,║En║) = ║R(E1,...,Ei',...,En)║. Conversely, 
the R* claimed by the principle of compositionality does not exist 
iff there are E1,...,En,E1',...,En' so that ║E1║=║E1'║,..., 
║En║=║En'║ and ║R(E1,...,En)║  ║R(E1',...,En')║; but it is easy 
to see that this is excluded by the principle of intersubstitutivity of 
synonyms. 

As Janssen (1986) pointed out, given the principle of 
compositionality, we can see a semantically interpreted language 
as a many-sorted algebra of expressions mapped - by a 
homomorphic mapping - onto the many sorted algebra of 
meanings. 

Speaking about such general structural semantic principles, we 
can mention one more, interconnecting meaning and truth. It 
states that if two sentences differ in truth value, they cannot but 
differ in meaning. If we denote the truth value of the sentence S 
as |S|, we have7 

 if |S1||S2|, then ║S1║║S2║,  

for every sentences S1 and S2. 

This principle together with the principle of the intersubstitutivity 
of synonyms yields what can be called the principle of the 
intersubstitutivity of synonyms salva verirate: 

 if ║Ei║=║Ei'║,  

  then |R(E1,...,Ei,...,En)| = |R(E1,...,Ei',...,En)|, 

                                                 
7  Elswhere I called it the principle of verifoundation (see Peregrin 
1994; 2001b). Cresswell (1982) considers it to be the most certain 
principle of semantics. 
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whenever R(E1,...,Ei,...,En) and R(E1,...,Ei',...,En) are sentences. The 
inversion of this principle is sometimes called the Leibniz principle: 

 if |R(E1,...,Ei,...,En)| = |R(E1,...,Ei',...,En)| for every sentences 
  R(E1,...,Ei,...,En) and R(E1,...,Ei',...,En), then ║Ei║=║Ei'║. 

 

1.6 The four kinds of models 

Let me explain, in greater detail, what kinds of models of 
language formal semantics introduced and we are going to 
reonstruct. Each such model will consist of two parts, of syntax 
and semantics. The syntactical part will reconstruct the set of 
well-formed expression with which it will work. It will consist of 
two parts: a vocabulary and a set of syntactic rules. The 
vocabulary will be a list of words, of elementary expressions 
divided into syntactic categories (e.g. the words Eco and 
Schwarzenegger of the category term and the words writer and 
actor of the category predicate). The rules will prescribe how to 
build more complex expressions out of simpler ones (e.g. that it 
is possible to combine a term with a predicate into a statement: 
writer(Eco)). In sum, the syntactical part will determine what 
counts as a well-formed expression. 

The semantical part of the definition of the model will equip every 
well-formed expression with a set-theoretical object, 
reconstructing the meaning of the expression (e.g. the words Eco 
and Schwarzenegger with the persons Eco resp. Schwarzenegger 
and the words writer and actor with the sets of all writers resp. 
actors). It will consist of two parts copying the two parts of the 
syntactic component. The first part will assign a set-theoretical 
object to every word of the vocabulary. The second part, then, 
will tell us, for every syntactic rule, how to construct an object 
assigned to a complex expression built according to this rule from 
the objects assigned to its parts (e.g. that a statement consisting of 
a term and a predicate is assigned the truth value Tr if the object 
assigned to its term is an element of the set assigned to its 
predicate; and the value Fa otherwise). 
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What we call models are thus a kind of artificial languages such as 
those we know from formal logic. And indeed I think that the 
artificial languages of logic can be seen as this kind of models of 
natural language (Peregrin, 2020). The difference is that logical 
languages concentrate on a logical part of their vocabulary, usually 
leaving the extralogical part completely aside; whereas here we are 
interested in all parts of the vocabulary, without a difference.  

In this book, I discuss four kinds of models delivered by formal 
semantic. In Chapter 3, I discuss what I call the extensional model 
of meaning. This is the model which was mostly developed within 
formal logic thanks to people like Frege, Tarski and many others. It 
is the model that is sufficient if we want to discuss mathematics or 
just leave aside the empirical dimension of language. Many 
logicians did concentrate on mathematics, and so they were content 
with this kind of semantics; however, for philosophers and linguists 
who took natural language seriously this kind of semantics was 
simply a non-starter. 

The model that I call intensional, then, was a breakthrough. It was 
foreshadowed in the writings of Carnap and it came to full fruition 
in the hands of Montague and his followers. It showed how to 
model the meanings of even the empirical expressions, using the 
concept of possible world. This concept was hinted at by Carnap, 
who felt that extension is not a fair model of meaning in the intuitive 
sense of the word and that we need to get a grip on the notion of 
intension; independently of this, it was also arrived at by Kripke, 
who looked for the semantics of modal logic. I discuss this semantic 
model in Chapter 4.  

As intentional logical model turned out to be not wholly 
waterproof (It was challenged especially with the propositional 
attitude reports), there appeared amendments, which led, quite 
quickly, to models which I classify as hyperintensional. This is a 
bundle of different kinds of models, which share the assumption 
that meaning has a kind of structure that is related to the syntactic 
structure of their expressions. These models are discussed in 
Chapter 5.  
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Finally, in Chapter 6, I discuss the models that I call dynamic. 
They appeared most recently and they took into consideration the 
fact that language is a means of discourse which is a dynamic 
enterprise. Their proponents maintained that if we want to 
analyze natural language with all its peculiarities like pronouns or 
the phenomenon of anaphora, we must build different semantic 
models than the intensional or the hyperintensional ones. In 
particular, we need to incorporate the concept of context.  

In the last chapter of the book I return to the general problem of 
capturing meaning as object. I conclude that the question whether 
this is reasonable must be kept apart from the question whether 
meaning really is an object (where there may be no clear answer 
to the latter question). I maintain that we should see the relation 
between the models of meaning and their target phenomena as 
that of explication. And that this explication is extremely fruitful 
because it equips semantics with a huge toolbox of set theory. 
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2 A very short history of formal semantics 

 
2.1 Frege 

The roots of formal semantics, we already saw, can be traced back 
to the writings of Gottlob Frege (1848-1925), the German 
mathematician, logician and philosopher who laid the foundation 
not only of modern formal logic but also of what has later become 
known as analytic philosophy (Dummett, 1996). He was the first 
to clearly realize that semantics has little to do with psychology, 
and that it could be usefully explicated in mathematical terms 
(Dummett, 1981a; 1981b).  

Frege's depsychologization of semantics followed from his 
depsychologization of logic. Frege understood how crucial it was 
for the development of logic to draw a sharp boundary separating 
it from psychology: to make it clear that logic is not a matter of 
what is going on in some person's head, in the sense that 
psychology is. The reason is that logic is concerned with what is 
true and consequently what follows from what – and whether 
something is true, or whether something follows from something 
else, is an objective matter independent of what is going on in the 
head of a particular person.  

As a consequence, Frege realized that if logic must be separated 
from psychology, then the same is true for semantics – at least 
insofar as semantics underlies truth and entailment. It is clear that 
the truth value of a sentence depends on the meaning of the 
sentence: the sentence "London is in England" is true not only due 
to the fact that London is in England, but of course also due to the 
fact that the words of which it consists mean what they do in 
English. Hence, if meaning were a matter of what is going on in 
somebody's head, then truth would have to be too – hence 
meaning must not, in pain of the subjectivization of truth, be a 
psychological matter. But what, then, is meaning? 

Frege started from the prima facie obvious fact that names stand 
for objects of the world. (Unprecedentedly, he assimilated 
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sentences to name as well: he saw them as specific kinds of names 
that denote truth values. The reason for this move was that he 
divided expressions into two sharply separated groups: into 
"saturated" – i.e. self-standing – and "unsaturated" – i.e. 
incomplete – ones. He took names and sentences as species of the 
former kind, whereas he took predicates as paradigmatic 
examples of the latter one; and he came to use the word "name" 
as a synonym of "saturated expression".) His most brilliant 
contribution to the explication of the concept of meaning then was 
the way he accounted for the meanings of predicates in terms of 
what we have dubbed Frege's maneuver. He called them concepts, 
as usual; but he rejected the usual way of seeing concepts as 
something mental and, in effect, he suggested explicating them 
by means of studying how the expressions which express them – 
i.e. predicates – function within language. 

What is the function of a predicate, such as "to think"? Well, the 
predicate is attached to a subject to form a sentence. Hence if we 
assume that the meaning of a complex expression is the result of 
combining the meanings of its parts (i.e. that meanings are 
composed in a way paralleling that in which the expressions 
expressing them are), then the meaning of the predicate together 
with the meaning of a subject, which is the object stood for by the 
subject, yields the meaning of a sentence, i.e. a truth value. Hence 
a concept is something that together with an object yields a truth 
value – and this led Frege to identify concepts with functions, in 
the mathematical sense of the word, taking objects to truth values. 
In effect, this meant the identification of the meaning of an item 
with the semantic function of the item captured as a function in 
the mathematical sense of the word; and this opened the door for 
a mathematical treatment of semantics. Thus, we can say that 
Frege married semantics, which he had earlier divorced from 
psychology, to mathematics. 

Notice that Frege's maneuver has two substantial presuppositions. 
There is the presupposition that the meaning of a complex 
expression is yielded by (or 'composed of') meanings of the parts 
of the expression. This is the principle of compositionality we 
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discussed in §1.5. How do we know that this principle holds? 
Some theoreticians appear to think that it is an empirical thesis 
that must be verified as empirical theses are: by means of 
inspecting as many cases as possible. However, such a view 
presupposes that meanings are independently identifiable objects 
whose combinations can be studied in the way we study, e.g., 
combinations of molecules in a solution: that we can empirically 
verify (or falsify) the thesis that, say, the meaning of a sentence 
is yielded by the meaning of its subject and that of its predicate, 
by means of finding the meanings and finding out what they yield 
if they are put together. In contrast to this, we saw that for Frege 
the principle was rather a way of articulating what it takes to be 
meaning: the principle was co-constitutive of the notion of 
meaning in the sense analogous to that in which, say, the principle 
of extensionality is co-constitutive of the concept of set. And just 
as it makes no sense to try to find out whether sets are extensional 
(for this is simply part of what it takes to be a set), it makes no 
sense to try to find whether meaning is compositional. 

The other presupposition of Frege's maneuver is of a different 
kind: it concerns the behavior of the particular expressions to 
which it is applied. The presupposition is that the role of the 
expression within language is exhausted by, or at least in some 
sense reducible to, its role within the kind of syntactic 
combination which is taken into consideration. We explicated the 
meanings of predicates by considering the way they combine with 
names into sentences; but predicates also do other things, e.g. 
combine with adverbials into complex predicates. We must 
always be sure that this is taken care of – that it is proven that it 
is somehow substantiated to treat some part of the functioning of 
an expression as representative of the whole functioning. 

Is Frege's way of explicating the concept of meaning acceptable? 
In fact not: what Frege called meaning cannot be taken as a 
plausible explication of the pre-theoretic notion of meaning. After 
all, who would want to claim that all true sentences have the same 
meaning? And Frege soon came to realize the implausibility of 
such an explication. Therefore he complemented his theory of 
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meaning by what he called a theory of sense8. Every name, he 
claimed, has not only a meaning, but rather also a sense, which is 
the 'way of givenness' of the meaning. And it is then Frege's 
concept of sense, rather than his concept of meaning, which is to 
be taken as his explication of the intuitive concept of meaning.  

Frege's own instructive example is that of the terms "morning 
star" and "evening star". As we now know, these two terms refer 
to one and the same celestial body, the planet Venus. Hence they 
share the same meaning (in Frege's sense of the word), or (in the 
current jargon) the same referent. However, although the 
sentence "The morning star is the morning star" is obviously 
trivial, "The morning star is the evening star" does not appear to 
be such. The reason, Frege claimed, is that the terms differ in their 
senses, i.e. in the ways they present their referent: "the morning 
star" presents it as the most attractive body in the morning sky, 
whereas "the evening star" as the most attractive one in the 
evening sky. 

Hence we have the general picture according to which the relation 
between a name and what the name refers to is mediated by the 
sense of the name: 

NAME 

 

 

SENSE (i.e. meaning in the intuitive sense of the word) 

 

 

MEANING (i.e. object referred to) 

 

 

                                                 
8 See Frege (1892b). 
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Another of Frege's path-breaking contributions to the 
development of logic and mathematics was his establishment of 
a logical langua 

ge which, despite the fact that it looked very different, was 
structurally almost identical to what we now call predicate 
calculus. His basic achievement was the introduction of what we 
know today as quantifiers (although Frege's own notation was 
idiosyncratic)9. 

When introducing quantifiers, Frege said roughly this: Imagine a 
sentence decomposed into two parts, and imagine one of the parts 
'abstracted away', the sentence being thereby turned into an 
"unsaturated", gappy torso. Then imagine the gap in this matrix 
being filled with various things10 and consider the truth values 
resulting from the individual saturations. In some cases it can 
happen that however we fill the gap, we will always reach a true 
sentence; which Frege abbreviated by means of the general 
quantifier. Thus, the sentence that in modern notation reads 

 xFx 

was, by definition, his shorthand for "whatever replaces the x in 
Fx, we gain a true sentence". Similarly, Frege's equivalent of the 
modern 

 xFx 

was introduced to shorten the claim that there is at least one thing 
that can replace the x in Fx so that we gain a true sentence. 

                                                 
9 See Frege (1879). 
10 According to modern standards, this is ambiguous: it can mean either 
(i) imagine that the gap is literally filled with an expression, or (ii) 
imagine that the formal sign marking the gap, the variable, is made to 
refer to an object. These two interpretations (ultimately resulting into 
what is nowadays called the substitutional and the objectual notion of 
quantification, respectively) come out as equivalent only if we assume 
that every object (within the relevant universe of discourse) has a name. 
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In this way, Frege introduced the machinery of quantifiers and 
variables in the shape that has underlain almost all formal logic 
since. 

 

2.2 Tarski 

Frege's distinction between meaning and sense has influenced 
virtually all subsequent theories of meaning; however, his 
"mathematical" explication of concepts and meanings has not 
been absorbed as quickly as it might have deserved. Thus it is 
somewhat peculiar that when Carnap (who was familiar with 
Frege's teaching) in 1934 wrote his important book about the 
logical formalization of language, Der Logische Syntax der 
Sprache, he claimed that the only aspect of language that is 
susceptible to formalization is syntax; that semantics is ineffable. 
It was only slightly later, after he had absorbed the teaching of 
Alfred Tarski (1901-1983), that he admitted that there was a way 
of formalizing semantics that was as rigorous as the formalization 
of syntax. 

A great deal of Tarski's theory of semantics looks like re-
discovering Frege's ideas and putting them into the context of a 
more developed theory of formal logic. His formalization of 
semantics was a kind of by-product of his theory of truth. What 
he was after was the fixation of the meaning of "true" by putting 
together some axioms governing it; just like some of his 
colleagues had fixed the meaning of "set" by means of axiomatic 
set theories before. Tarski11 realized that what would fix the 
meaning of "true" were all sentences of the shape 

 (1) true(....)  __, 

with the dots replaced by a name of a sentence and the underscore 
by the very sentence. Sentences of this form are now generally 
called T-sentences (you may opt for interpreting the "T-" as 
standing either for "Tarski", or for "truth"). However, the set of 
all these sentences was infinite, and hence could not be taken as 
                                                 
11 See Tarski (1935; 1944). 
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the desired theory. So the problem of the explication of the 
concept of truth appeared to boil down to the problem of finding 
a 'reasonable' (preferably finite) set of axioms that would entail 
the infinite set of all the T-sentences12. 

If we assume that the language which we are considering is the 
language of standard logic, we can divide its sentences into three 
classes: atomic (sentences consisting of a predicate applied to the 
appropriate number of terms), logically complex (those consisting 
of a logical operator applied to one or two sub-sentences) and 
quantified (those consisting of a quantifier binding a variable in a 
formula). Now it is clear that using a few simple principles we 
can deduce the T-sentences for logically complex sentences from 
those for the other sentences. The point is that using the principles 
                                                 
12 Could we make do with a single axiom produced by 'closing' the 
schema (1) by means of variables and quantifiers? It is easy to see that 
xy(true(x)  y) would not do; but what about y(true('y')  y)? 
A moment's reflection reveals that it would work only if 'y' referred to 
a name of the sentence y – but in fact the name which arises from 
enclosing a symbol in quotes notoriously refers to the very symbol. 
(Hence 'y' does not refer to the name of the sentence y, but rather to the 
penultimate letter of the alphabet.) Similarly y(true(name(y))  y): 
even if we disregard that it would require y to be a sentential variable 
and name to form terms out of sentences (and hence would not be 
accommodable within the framework of the predicate calculus, which 
Tarski took as the ultimate framework of logic), there does not appear 
to be a function taking denotations of sentences to their names (which 
is to be denoted by name) – the relationship between the former and the 
latter appears to be one-to-many. And even if we assumed that for every 
denotation of sentence there is one 'canonical' name to be yielded by 
such a function, to make the functor denote the right function (taking a 
denotation of a sentence to its canonical name) would amount to 
inventing an axiomatic theory doing precisely what Tarski urged: 
entailing all the T-sentences. This becomes obvious when trying to 
engage the converse functor denotation forming sentences out of terms 
and denoting a function taking sentences to what they denote. In this 
case the T-scheme would yield us y(true(y)  denotation(y)); and it 
is clear that then denotation becomes simply equivalent to true, and 
providing a theory for it is providing a theory of true. See also Kirkham 
(1995, Chapter 5). 
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(where Neg(x) refers to the negation of the sentence x and 
Con(x,y) refers to the conjunction of x and y13) 

 (2) true(Neg(x))  not true(x), 

and 

 (3) true(Con(x,y))  (true(x) and true(y)), 

we can deduce the T-sentence of any conjunction and any 
negation from those of its immediate subsentence(s) (the same 
clearly holds for the other standard logical operators); and 
applying this recursively, we can eventually deduce it from other 
than logically complex sentences.  

Now what about quantified sentences, of the kind of xF? In 
general they do not contain any subsentences, but only (possibly 
open) subformulas, so the previous method is not applicable. Here 
is where Tarski came with an ingenious idea14: he put the concept 
of truth to the side for a while and instead turned to the notion of 
satisfaction, a relation between formulas and objects of the world. 
Intuitively, satisfaction is the relation which holds between the 
formula brothers(x,y) and a pair of persons iff the two persons 
are brothers; but as a formula can contain an unlimited number of 
different variables, things are simplified if we define it as a 
relation between formulas and infinite sequences of objects. 
(Variables are thought of as linearly – e.g. alphabetically – 
ordered and hence corresponding to the objects of the sequences 
in a one-one way. Hence if we assume that x is the first and y the 
second variable, in the case of brothers(x,y) only the first two 
elements of such a sequence matter.) 

                                                 
13 Note that talking about the sentences of a language requires that the 
sentences are contained within our universe of discourse. As the 
assumption that we are capable of treating of a language within the very 
language might be dangerous (by being liable, as Tarski showed, to 
inducing inconsistencies), we assume that we are operating within is 
what Tarski called metalanguage, i.e. a language capable of treating of 
an object language by containing names of its expressions. 
14  See Peregrin (1999). 
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It is easy to see that satisfaction of quantified formulas is 
reducible to that of their unquantified subformulas. To show this, 
we must first introduce some notation. Let us assume that the 
variables of the language we deal with are ordered, and let Var(i) 
refer to the ith one. Moreover, let All(x,y) denote the formula 
constituted by the concatenation of the general quantifier, a 
variable x and a formula y; and let Ex(x,y) denote the formula 
constituted by the concatenation of the existential quantifier, the 
variable x and the formula y15. Finally, if S is an infinite sequence 
of objects, then let S[i,a] refer to the sequence which is identical 
with S save for the only possible difference that its ith constituent 
is a. Then it clearly holds that 

 (4) sat(All(Var(i),y),S)  sat(y,S[i,a]) for every object a of the 
universe  

 (5) sat(Ex(Var(i),y),S)  sat(y,S[i,a]) for at least one object a 
of the universe  

and satisfaction for quantified formulas is indeed reducible to that 
for their subformulas. (As it is more perspicuous to work directly 
with functions assigning objects to variables instead of the object-
sequences which effect such assignments indirectly, we will do 

                                                 
15 Note that the sign "x", as employed within the previous paragraph, is 
not a variable (of the object language), but a name of a variable (a 
symbol of our metalanguage). This may easily lead to a certain chaos, 
for the following reason. When we speak about a non-linguistic object, 
we have no choice but to use a sign standing for it – we cannot put, e.g., 
an apple itself into a sentence speaking about it. Not so, however, in 
case of linguistic objects, signs. We can, as is often done, put the object 
itself, instead of its name, into a sentence. Thus suppose that "α" is a 
variable of the language we are investigating. Then we can say the 
formula... contains the variable "α", or, if "α" is the first variable 
according to the relevant ordering and we use the notation introduced 
in the previous paragraph, we can equivalently say the formula ... 
contains the variable Var(1), but it is often also written the formula ... 
contains the variable α. The last formulation is literally incorrect, but it 
is often used instead of the first one. 
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so; and we will call a function assigning an object to every 
variable a valuation of variables.) 

Moreover, satisfaction for logically complex formulas is 
reducible to that for logically simple ones along the lines wholly 
analogous to those along which truth is, viz. 

 (6) sat(Neg(x),S)  not sat(x,S) 

 (7) sat(Con(x,y),S)  (sat(x,S) and sat(x,S)). 

This implies that for a language with a finite number of atomic 
formulas we can have a finite theory of satisfaction (the theory 
would be constituted by the sentences stating the satisfaction 
conditions for all the atomic formulas plus by (4)-(7)). Now the 
point of this maneuver is that for sentences (formulas with no free 
variables), truth is clearly reducible to satisfaction: 

 (8) true(x)  (sat(x,S) for every sequence S). 

Hence the finite theory of satisfaction yields us the desired finite 
theory of truth. 

Tarski's investigation thus seemed to suggest that the concept of 
truth has to be attacked by means of the investigation of a 
language-world relation such as satisfaction – therefore this 
theory has come to be called the semantic theory of truth16. 
Moreover, for many logicians (notably for Carnap) it acted as a 
revelation of the fact that semantics was not as inaccessible to a 
formal treatment as it had appeared up to the point. 

 

2.3 Carnap 

Tarski's relation of satisfaction gestures towards a formalization 
of the relation expression-meaning (or expression-referent); but it 
is not really a formalization of it. In fact, from the viewpoint of 
natural language it is slightly unnatural – for it presupposes the 

                                                 
16 See  Kirkham (1995, Chapter 5); Peregrin (1999). 
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existence of open formulas, which have no counterpart in natural 
language17.  

Let us consider a formal language with no variables and 
quantifiers, but with an infinite number of atomic sentences. Let 
us assume that the category of terms of the language is productive, 
i.e. that we have functors capable of taking terms to terms (such 
as '+' or '' of arithmetic, which join pairs of terms into complex 
terms). How might a truth definition for such a language look? 
Instead of Tarski's sat we would need the relation des relating an 
expression to an object, to what it 'designates'. Let us provide for 
the reducibility of true to des (which gives the introduction of 
des its point) by assuming that the objects that are designated by 
sentences, 'propositions', are capable of 'being true'. As the 
analogue of T-sentences we now have what can be called D-
sentences, namely sentences of the form 

 des(...., __), 

where the dots are replaced by a name of an expression and the 
underscore by the expression itself. Thus the D-sentences include 

 des("John",John) 

 des("to be bald", to be bald) 

 des("John is bald", John is bald) 

the second arguments of which are supposed to stand for the 
individual John, the property of being bald and the proposition 
that John is bald (whatever properties and propositions might be 
supposed to be), respectively. In this way we reach the view of 
semantics developed in the forties by Rudolf Carnap (1891-
1970). 

Now if the concept of designation is to yield us a theory of truth 
as the concept of satisfaction did, we must provide for two things: 
(1) a finite theory of designation (a finite number of axioms 

                                                 
17 Cf. Peregrin (2000b). 
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entailing all the D-sentences); and (2) the reduction of the concept 
of truth to the concept of designation. Let us start with the latter. 

Carnap (1942, p. 51) claims that the reduction works as follows18: 

 true(x)  prop (des(x,prop)  prop) 

i.e. a sentence x is true iff it expresses a proposition prop and prop 
is the case. Hence, a sentence is true if, e.g., it expresses the 
proposition that it is raining and it is the case that it is raining. 
This amounts to assuming that there is a way from propositions 
to their truth values. The trouble is that it is not clear what 
propositions (and properties) are really supposed to be. 
Alternatively, we could stick to the Fregean approach and to 
assume that what sentences designate are directly the truth values, 
which would yield us 

 true(x)  des(x,Tr). 

Then the reduction of all the D-sentences to the D-sentences for 
logically non-complex sentences is effected by the principles of 
the following kind 

 des(Neg(x),Tr)  des(x,Fa) 

 des(Con(x,y),Tr)  (des(x,Tr) and des(x,Tr)). 

Now, however, we need not stop here, for designation is defined 
not only for sentences, but also for their parts; and for the sentence 
p(s) consisting of a subject s a predicate p we can stipulate 

 des(p(s),Tr)  ir(des(s,i) and des(p,r) and the individual i 
has the property r) 

If we accept the Fregean identification of properties with 
functions, we can turn this further into 

 des(p(s),Tr)  ir(des(s,i) and des(p,r) and r(i)) 

                                                 
18 Note that if we define designation(x) as the only prop such that 
des(x,prop), this becomes tantamount to the last proposal discussed 
above in footnote 12.  
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Moreover, for complex names of the shape f(t) we have 

 des(f(t),i)  gi(des(t,i) and des(f,g) and i = g(i)) 

Carnap (1947) also realized that if what we are after is meaning 
in the intuitive sense of the word, then we should not be interested 
so much in meanings in the sense of Frege, but rather in Fregean 
senses. However, as Frege did not explicate the concept of sense 
to Carnap's satisfaction, Carnap proposed replacing the Fregean 
twin concepts of meaning and sense with the concepts of 
extension and intension. Roughly speaking, the extension of a 
term is what the term shares with all terms that are equivalent to 
it; whereas its intension is what it shares with all the terms that 
are logically equivalent to it. 

 Of course this definition becomes non-trivial only after we 
give a rigorous account of the concept of equivalence on which it 
rests. For the basic categories of the predicate calculus this is not 
difficult: two individual expressions I1 and I2 are equivalent iff I1 
= I2, two n-ary predicates P1 and P2 are equivalent iff x1...
xn(P1(x1,...,xn)  P2(x1,...,xn)); and two sentences S1 and S2 are 
equivalent iff S1  S2. This explication leads to the concept of 
extension almost indistinguishable from Frege's concept of 
meaning: the extension of an individual expression being the 
object for which it stands, that of a predicate the function 
assigning the truth value Tr to those n-tuples of objects of which 
the predicate is true (or, equivalently, the class of the n-tuples) 
and that of a sentence its truth value. 

 The concept of intension is far more problematic, but Carnap 
indicated a way to approach it, namely via the concept of 
(possible) state-of-affairs. This concept has later been replaced, 
especially thanks to the seminal results of Saul Kripke (1963b) 
concerning the model theory for modal propositional calculus, by 
the concept of possible world.  
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2.4 Standard Logic and its Semantics 

Some logicians during the twentieth century, especially those 
inclining to mathematics, came to the conclusion that there is 
something as the language of logic – that it is the language of what 
has come to be called the first-order predicate calculus19. The 
vocabulary of a language within the framework of this calculus 
falls into three categories: 

 1. logical constants (, , , , , ) 

 2. extralogical constants (individual, predicate, functor) 

 3. variables (individual) 

The syntax of such a language is then as follows: 

An individual constant and an individual variable is a term; 
moreover, if F is an n-ary functor and T1,...,Tn are terms, then 
F(T1,...,Tn) is a term (and nothing else is a term).  

If P is an n-ary predicate and T1,...,Tn terms, then P(T1,...,Tn) is a 
formula; moreover, if F1 and F2 are formulas and x a variable, 
then F1, F1F2, F1F2, F1F2, xF1 and xF1 are also formulas 
(and nothing else is a formula).  

The semantic treatment of a language of this kind that has become 
standard needs some elucidation, for it rests heavily on the 
logical/extralogical boundary, which has not as yet played a 
principal role in our exposition. We have seen that Tarski's 
semantic theory of truth was based on the concept of satisfaction, 
which in turn necessitated the employment of the valuations of 
variables. Tarski's explication of the concept of logical 
consequence was based on an analogous idea, only applied at a 
higher level. While a sentence S is a consequence (simpliciter) of 
S1,...,Sn iff S cannot be false unless at least one of S1,...,Sn is, it is 
their logical consequence iff this is the case independently of 

                                                 
19 Probably not many logicians would subscribe to the existence of 
"one true logic" explicitly (as e.g. Priest (2001) would), but in 
majority of contexts where the term "logic" is used without a 
qualification, it means first-order predicate calculus. 
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what is stood for by the non-logical words in S1,...,Sn and S – in 
other words if this is the case for every assignment of values to 
these words (This, of course, presupposes that we are able to 
classify the vocabulary of our language into the logical and the 
non-logical part, which is far from non-controversial, but let us 
neglect this problem for now.) This means that the fact that John 
is unmarried is a logical consequence of John is a bachelor and 
Every bachelor is unmarried because X is (a) Y is a consequence 
of X is (a) Z and Every Z is (a) Y whatever may be stood for by X, 
Y and Z, schematically 

 XYZ (X is (a) Z, Every Z is (a) Y  X is (a) Y). 

Now this is a 'meta-level' quantification (the 'quasiformula' just 
presented is not to be understood as belonging to the language in 
question, but rather as being 'about' it), which cannot be mixed 
with the 'object level' one (such as would result, e.g., from the 
standard regimentation of Every bachelor is unmarried as 
x(B(x)U(x))). Therefore, we need two separate kinds of 
variable words and two separate sets of valuations: we keep 
calling the 'object level' variables simply variables, whereas we 
call the 'meta-level' ones parameters. Whereas the former 
underlie quantification of the object language, the latter underlies 
(explicit or implicit) quantification of the metalanguage, of 
statements about the object language. 

Thus, the resulting semantics is based on two sets of assignments 
of objects to expressions: the valuation of variables and the 
interpretation of parameters. This variety of formal semantics has 
been developed especially within the framework of what has 
come to be called model theory and which has developed out of 
Tarski's later work. Hence from the model-theoretic perspective, 
a language of the kind discussed has three basic kinds of 
expressions: The semantics of logical constants is taken to be 
fixed; and they are usually not taken to designate objects 
(although it also is possible to take them so). Parameters or 
extralogical constants are taken to be assigned a denotation by the 
interpretation, which maps individual constants on elements of a 
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universe, predicate constants on relations over the universe, and 
functor constants on functions over the universe. Variables are 
then taken to be interpreted by the valuation, which maps them 
on the elements of the universe. Given an interpretation I and a 
valuation V, every individual term T is assigned a denotation 
║T║I,V based on I and V in the following way: 

 If T is an individual constant, then ║T║I,V = I(T) 

 If T is an individual variable, then ║T║I,V = V(T) 

 If T is U(T1,...,Tn) for some functor U and terms T1,...,Tn,  

  then ║U(T1,...,Tn)║I,V = I(U)(║T1║I,V,...,║Tn║I,V)  

An interpretation I and a valuation V also render each formula 
true or false. The usual inductive definition goes as follows: 

 If F is P(T1,...,Tn) for some predicate P and terms T1,...,Tn, then 
F is true w.r.t. (or satisfied by) I and V iff <║T1║I,V,...,║Tn║I,V>
I(P) 

 If F is F, then F is true w.r.t. (or satisfied by) I and V iff F 
is not 

 If F is F1F2, then F is true w.r.t. (or satisfied by) I and V iff 
both F1 and F2 are 

 If F is F1F2, then F is true w.r.t. (or satisfied by) I and V iff 
either F1, or F2 is 

 If F is F1F2, then F is true w.r.t. (or satisfied by) I and V iff 
either F2 is or F1 is not 

 If F is xF, then F is true w.r.t. (or satisfied by) I and V iff F 
is true w.r.t. (or satisfied by) I and V for every valuation V which 
differs from V at most in the value it assigns to x 

 If F is xF, then F is true w.r.t. (or satisfied by) I and V iff F 
is true w.r.t. (or satisfied by) I and V for some valuation V which 
differs from V at most in the value it assigns to x. 

The fact that this system of logic is sometimes accepted as the 
"standard", "classical" or "normal" logic should not hide the fact 
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that there exist lots of both alternatives and extensions. Especially 
in recent decades there have emerged an immense number of new 
logical systems; some of them having been initiated by impulses 
from formal semantics. 

 

2.5 Chomsky 

Both Tarski and Carnap saw an unbridgeable gap between natural 
language and the formal languages of logic they investigated. 
They claimed that natural languages, not being exactly defined, 
cannot be directly studied by the mathematical means developed 
by logicians; and they tacitly assumed that the formal languages 
they dealt with were what natural language should ideally be 
replaced by if we want to do serious science. Moreover, later 
Tarski and his followers developing model theory were 
increasingly delving deeper into pure mathematics and losing 
sight of natural language.  

However, at the same time and quite independently of the 
development of logic, a revolution within the approach to natural 
language, which was to result into a large scale 'mathematization' 
of linguistics, was being started by Noam Chomsky (1928-). 
Chomsky's original goal was a rigorous description of the syntax 
of natural language. In his 1957 path-breaking Syntactic 
Structures (Lakoff, 1971) he introduced a general framework for 
such a description. It is based on the concept of generative 
grammar, in effect a collection of rules understood as generating 
all well-formed sentences of the language being described. 

The basic idea behind Chomsky's generative grammar is the idea 
of a rewrite rule. A rewrite rule simply instructs us to rewrite a 
sequence of symbols by another sequence of symbols. Thus, the 
rule 

 S  NP VP;  

instructs us to rewrite "S" by "NP VP". Now the idea of a 
generative grammar for a language L is the idea of a set of rewrite 
rules, working with the vocabulary of L plus some set of auxiliary 
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symbols, such that the set of all strings which can be produced by 
means of the (repeatable) application of the rules to the symbol S 
and which contain no auxiliary symbols coincides with the set of 
all the well-formed sentences of L. Thus, if L were to consist of 
the four sentences "John walks", "Mary walks", "John whistles", 
"Mary whistles", one of the possible generative grammars for it 
would be 

 S  N V 

 N  John 

 N  Mary 

 V  walks 

 V  whistles 

or, in an abbreviated form, 

 S  N V 

 N  John | Mary 

 V  walks | whistles 

(Clearly as long as the number of sentences of the language in 
question is finite, there always is the trivial grammar consisting 
of the rules instructing us to rewrite S by every particular 
sentence. However, as the number of sentences of natural 
language is potentially infinite, grammars for them cannot be that 
simple.) 

Chomsky then supplemented rewrite rules by the so-called 
transformation rules, and subsequently introduced plenty of 
extensions, modifications and innovations of his model which 
refashioned its nature several times, but the basic idea remained 
unchanged: the formal grammar should provide for the generation 
of all and only well-formed sentences of the language under 
consideration. 

What has changed is Chomsky's interpretation of the generative 
and transformative rules. At first they looked as merely utensils 
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of his theory, which did not correspond to anything real, later they 
ever more looked like descriptions of something to be found in 
human mind/brain, namely in that its part which Chomsky called 
the language faculty20. Thus, what originally looked like mostly 
an abstract mathematics, came to resemble an empirical theory of 
h ow language is realized in human brains. 

Does Chomsky's approach go beyond what we know from the 
logical theories of formal languages? Not really. Consider the 
grammar of standard logic as summarized in the previous section. 
Its syntax can be, and usually is, defined in the following way: 

 An individual constant and a variable is a term. 

 If FN is an n-ary functor and T1,...,Tn are terms, then 
FN(T1,...,Tn) is a term. 

 If PN is an n-ary predicate and T1,...,Tn are terms, then 
PN(T1,...,Tn) is a formula. 

 If F1 and F2 are formulas, then F1, F1F2, F1F2, F1F2, 
xF1, xF1 are formulas. 

This yields us, rather straightforwardly, the following generative 
grammar: 

 S  PN(T,...,T) | S | SS | SS | SS | VS | VS 

 T  V | C | FN(T,...,T) 

 PN  ... 

 FN  ... 

 V  ... 

 C  ... 

Hence from this viewpoint, the formalization of syntax proposed 
by Chomsky is only a minor variation on the theme of the 
specification of a formal language standardly entertained in logic. 

                                                 
20 See, e.g., Chomsky (1986; 1993; 2000). 
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However, the path-breaking import of Chomsky's approach did 
not consist in the shape of his grammars, but in the fact that he 
did not propose them to define formal languages, but rather to 
account for natural ones; and that he managed to persuade a 
substantial part of the scientific community that the syntax of a 
natural language can be usefully captured by formal means. 

Chomsky's successful attempt at the rigorization of natural 
language syntax was followed by attempts at the rigorization of 
semantics along analogous lines. Probably the first was the so-
called generative semantics (Lakoff, 1971); Chomsky himself 
then extended his theory to cover not only syntax, but other 
'levels' of language as well. The idea behind such attempts was to 
capture 'semantic structure' in a way analogous to the one in 
which the syntactic structure was captured. Many linguists did 
take this as an acceptable approach to semantics of natural 
language; however, there were also protests that theories of this 
kind do not amount to theories of semantic interpretation. The 
most substantial argument, leveled e.g. by Lewis (1972), 
appeared to be that nothing can aspire to being a theory of 
semantics unless it yields a theory of truth conditions. 

 

2.6 Montague and since 

So around the sixties, on the one hand, there was a developed 
mathematical theory of natural language, but only of its syntax; 
and, on the other hand, there was a developed theory of semantics, 
but only for the standard predicate calculus, which appeared to be 
too simple to provide for an interesting model of natural language. 

Of course there were logicians, linguists and philosophers who 
thought about bridging the gap. The most famous of them became 
the American logician Richard Montague (1930-1971) who 
proposed a logical system which, on the one hand, had a 
rigorously defined, Tarsko-Carnapian semantics, and, on the 
other, provided for a much more realistic model of natural 
language than any previous logical language. As a consequence, 
some theoreticians of language realized that model theory might 
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therefore provide for an interesting explication of the semantics 
of natural language. 

One important ingredient of this development was the 
construction of the semantics for modal logics due to Kripke 
(1963a; 1963b; 1965). Here it is where the all-important concept 
of possible world appeared as a pillar of the semantic theory. 
Modal logic is, roughly, the logic of necessity and possibility; and 
Kripke realized that to account for its semantics, we must not let 
the content of a sentence be exhausted by its truth-value (in the 
actual world), that it needs to contain also the information about 
its (potential) truth-values in worlds that are only possible, not 
actual. 

Montague realized that if the model-theoretic means is to be 
engaged for the purpose of explication of the semantics of natural 
language, then it cannot stay on the level of extension. Drawing 
on the ideas of Carnap and Kripke, he formalized the concept of 
intension as, in effect, the relativization of extension to possible 
worlds (Montague, 1974). This is to say he presupposed a given 
set of possible worlds (representing ways our world might also 
be) and understood an intension of an expression as the function 
taking a possible world to the extension of the expression within 
the world. Thus if the extension of the singular term "the president 
of the USA" is the (current) president of the USA, its intension 
will be the function taking every possible world to the person who 
is the president of the USA in that world (if any); if the extension 
of the general term "horse" is the set of actual horses, its intension 
is the function which takes every possible world to the set of all 
the horses of the world; and if the extension of the sentence "The 
president of the USA is a horse" is the truth value Fa, its intension 
is a function which takes every possible world to the truth value 
of the sentence in that world. 

Montague furnished each expression of his model of language 
with a denotation (extension) and a sense (intension); and 
assumed that although what is essential are denotations, there are 
contexts in which the sense of an expression somehow assumes 
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the place of its denotation. In particular, he introduced the 
operator  such that for any expression E the denotation of E is 
– by definition – the sense of E. (The dual operator  then worked 
the other way around: the sense of E is defined as the denotation 
of E.) The idea was that a natural language expression E could, 
on the level of Montague's logic, be interpreted as either E or E, 
depending on its character and the context of its occurrence. 

Moreover, Montague introduced a very general framework for the 
formalization of languages. We have seen that whereas standard 
model theory assumed a discriminating stance towards the 
vocabulary of its language (only words of some categories were 
taken as designators), the Chomskian theory of syntax took 
expressions of all categories alike. Montague assimilated model 
theory for his intensional logic to the indiscriminative stance. 
(This was not unprecedented: this stance was adopted long ago 
by people studying the semantics of lambda calculus, such as 
Church (1940), or Henkin (1949); on which Montague's 
intensional logic also drew.)  

This led Montague, in effect, to the vantage point from which an 
(uninterpreted) language appeared as a finitely generated algebra, 
its carrier being constituted by the well-formed expressions of the 
language, its generators being the words, and its operations the 
syntactical, formation rules. The interpretation (meaning-
assignment) for such a language then appears as a homomorphism 
of the algebra into another algebra (of 'denotations' or 'meanings'), 
the requirement of homomorphism reflecting the principle of 
compositionality (Janssen, 1986). 

The Montagovian vantage point has proved itself fruitful; and 
Cresswell (1973) intensional model of language has been 
followed by a number of elaborations and modifications. There 
were also alternative intensional models (due to Tichý (1978), 
Tichý (1978) and others) proposed partly or wholly 
independently of Montague's approach. Then there followed 
modified, 'hyperintensional' models of semantics attempting to 
improve on the intensional model especially to make it capable of 
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adequately analyzing the so-called 'propositional attitude reports' 
(see Bigelow (1978), or Lewis (1972)). To these we can count 
systems based on the so called structured or Lewis-type meanings 
(Cresswell (1985), Tichý (1988)), Barwise & Perry (1983) theory 
of constructions, Barwise & Perry (1983) situation semantics etc. 
There further followed models reflecting the 'dynamic' aspect of 
natural language, such as Kamp (1981) DRT or various models 
based on dynamic logics (van Benthem, 1997). The early state of 
the art was excellently surveyed by van van Benthem & ter 
Meulen (1996). 


